Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.092
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 322, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713216

ABSTRACT

Schisandra henryi is an endemic species of medicinal potential known from traditional Chinese medicine. As part of this study, a complex biotechnological and phytochemical assessment was conducted on S. henryi with a focus on phenolic compounds and antioxidant profiling. The following in vitro cultures were tested: microshoot agar and callus, microshoot agitated, and suspension, along with the microshoot culture in PlantForm bioreactors. Qualitative profiling was performed by ultra-high-performance liquid chromatography with a photodiode array detector coupled with ion-trap mass spectrophotometry with electrospray ionization and then quantitative analysis by high-performance liquid chromatography with a diode array detector using standards. In the extracts, mainly the compounds from procyanidins were identified as well as phenolic acids (neochlorogenic acid, caffeic acid, protocatechuic acid) and catechin. The highest content of phenolic compounds was found for in vitro agar microshoot culture (max. total content 229.87 mg/100 g DW) and agitated culture (max. total content 22.82 mg/100 g DW). The max. TPC measured using the Folin-Ciocalteu assay was equal to 1240.51 mg GAE/100 g DW (agar microshoot culture). The extracts were evaluated for their antioxidant potential by the DPPH, FRAP, and chelate iron ion assays. The highest potential was indicated for agar microshoot culture (90% of inhibition and 59.31 nM/L TEAC, respectively). The research conducted on the polyphenol profiling and antioxidant potential of S. henryi in vitro culture extracts indicates the high therapeutic potential of this species. KEY POINTS: • Different types of S. henryi in vitro cultures were compared for the first time. • The S. henryi in vitro culture strong antioxidant potential was determined for the first time. • The polyphenol profiling of different types of S. henryi in vitro cultures was shown.


Subject(s)
Antioxidants , Biflavonoids , Phenols , Plant Extracts , Schisandra , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/chemistry , Chromatography, High Pressure Liquid , Schisandra/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Catechin/chemistry , Catechin/analysis , Catechin/metabolism , Catechin/pharmacology , Bioreactors
2.
Compr Rev Food Sci Food Saf ; 23(3): e13352, 2024 May.
Article in English | MEDLINE | ID: mdl-38634188

ABSTRACT

A-type proanthocyanidins (PAs) are a subgroup of PAs that differ from B-type PAs by the presence of an ether bond between two consecutive constitutive units. This additional C-O-C bond gives them a more stable and hydrophobic character. They are of increasing interest due to their potential multiple nutritional effects with low toxicity in food processing and supplement development. They have been identified in several plants. However, the role of A-type PAs, especially their complex polymeric form (degree of polymerization and linkage), has not been specifically discussed and explored. Therefore, recent advances in the physicochemical and structural changes of A-type PAs and their functional properties during extraction, processing, and storing are evaluated. In addition, discussions on the sources, structures, bioactivities, potential applications in the food industry, and future research trends of their derivatives are highlighted. Litchis, cranberries, avocados, and persimmons are all favorable plant sources. Α-type PAs contribute directly or indirectly to human nutrition via the regulation of different degrees of polymerization and bonding types. Thermal processing could have a negative impact on the amount and structure of A-type PAs in the food matrix. More attention should be focused on nonthermal technologies that could better preserve their architecture and structure. The diversity and complexity of these compounds, as well as the difficulty in isolating and purifying natural A-type PAs, remain obstacles to their further applications. A-type PAs have received widespread acceptance and attention in the food industry but have not yet achieved their maximum potential for the future of food. Further research and development are therefore needed.


Subject(s)
Proanthocyanidins , Humans , Proanthocyanidins/analysis , Proanthocyanidins/chemistry , Fruit/chemistry , Polymerization , Plants , Nutritional Status
3.
Int J Biol Macromol ; 265(Pt 2): 130681, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458285

ABSTRACT

The corn starch nanoparticles were prepared by incorporating three kinds of polyphenols, including quercetin, proanthocyanidins and tannin acid. The physicochemical and digestive properties of corn starch nanoparticles were researched. The quercetin showed a higher complexation index than proanthocyanidins and tannin acid when they complexed with corn starch. The mean size of corn starch quercetin, proanthocyanidins and tannin acid were 168.5 nm, 179.1 nm and 188.6 nm, respectively. XRD results indicated that all the corn starch-polyphenols complex showed V-type crystalline structure, the crystallinity of corn starch-quercetin complex was 19.31 %, which showed more formation of amylose-quercetin single helical formed than the other two starch-polyphenol complexes. In vitro digestion revealed that polyphenols could resist digestion and quercetin increased the content of resistant starch from 23.32 % to 35.24 % and polyphenols can form complexes with starch through hydrophobic interactions or hydrogen bonding. This study indicated the hydrophobic polyphenols had a more significant effect on the digestibility of corn starch. And the cell toxicity assessments demonstrated that all nanoparticles were nontoxic and biocompatible.


Subject(s)
Proanthocyanidins , Starch , Starch/chemistry , Zea mays/chemistry , Tannins , Proanthocyanidins/chemistry , Quercetin , Amylose/chemistry , Polyphenols
4.
Ultrason Sonochem ; 105: 106856, 2024 May.
Article in English | MEDLINE | ID: mdl-38554530

ABSTRACT

The residue remaining after oil extraction from grape seed contain abundant procyanidins. An ultrasonic-assisted enzyme method was performed to achieve a high extraction efficiency of procyanidins when the optimal extraction conditions were 8 U/g of cellulase, ultrasound power of 200 W, ultrasonic temperature of 50 ℃, and ultrasonic reaction time of 40 min. The effects of free procyanidins on both radical scavenging activity and thermal stability at 40, 60, and 80 ℃ of the procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were discussed. The presence of procyanidins at concentrations ranging from 0.02 to 0.10 mg/mL was observed to be effective at inhibiting lipid oxidation by 15.15 % to 69.70 % in a linoleic acid model system during reaction for 168 h, as measured using the ferric thiocyanate method. The procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were characterized by measuring the mean particle size and encapsulation efficiency. Moreover, the holographic plots showed that the effect-response points of procyanidins combined with α-tocopherol in liposomes were lower than the addition line and 95 % confidence interval limits. At the same time, there were significant differences between the theoretical IC50add value and the experimental IC50mix value. The interaction index (γ) of all combinations was observed to be less than 1. These results indicated that there was a synergistic antioxidant effect between procyanidins combined with α-tocopherol, which will show promising prospects in practical applications. In addition, particle size differentiation and morphology agglomeration were observed at different time points of antioxidant activity determination (0, 48, 96 h).


Subject(s)
Antioxidants , Liposomes , Proanthocyanidins , Proanthocyanidins/isolation & purification , Proanthocyanidins/chemistry , Liposomes/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Ultrasonic Waves , Vitis/chemistry , Grape Seed Extract/chemistry , Chemical Fractionation/methods , Particle Size , Temperature , Seeds/chemistry
5.
Parasit Vectors ; 17(1): 99, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429804

ABSTRACT

BACKGROUND: Soil-transmitted helminths (STH) infect more than a quarter of the world's human population. In the absence of vaccines for most animal and human gastrointestinal nematodes (GIN), treatment of infections primarily relies on anthelmintic drugs, while resistance is a growing threat. Therefore, there is a need to find alternatives to current anthelmintic drugs, especially those with novel modes of action. The present work aimed to study the composition and anthelmintic activity of Combretum mucronatum leaf extract (CMLE) by phytochemical analysis and larval migration inhibition assays, respectively. METHODS: Combretum mucronatum leaves were defatted with petroleum ether and the residue was extracted by ethanol/water (1/1) followed by freeze-drying. The proanthocyanidins and flavonoids were characterized by thin layer chromatography (TLC) and ultra-high performance liquid chromatography (UPLC). To evaluate the inhibitory activity of this extract, larval migration assays with STH and GIN were performed. For this purpose, infective larvae of the helminths were, if necessary, exsheathed (Ancylostoma caninum, GIN) and incubated with different concentrations of CMLE. RESULTS: CMLE was found to be rich in flavonoids and proanthocyanidins; catechin and epicatechin were therefore quantified for standardization of the extract. Data indicate that CMLE had a significant effect on larval migration. The effect was dose-dependent and higher concentrations (1000 µg/mL) exerted significantly higher larvicidal effect (P < 0.001) compared with the negative control (1% dimethyl sulfoxide, DMSO) and lower concentrations (≤ 100 µg/ml). Infective larvae of Ascaris suum [half-maximal inhibitory concentration (IC50) = 5.5 µg/mL], Trichuris suis (IC50 = 7.4 µg/mL), and A. caninum (IC50 = 18.9 µg/mL) were more sensitive to CMLE than that of Toxocara canis (IC50 = 310.0 µg/mL), while infective larvae of Toxocara cati were largely unaffected (IC50 > 1000 µg/mL). Likewise, CMLE was active against most infective larvae of soil-transmitted ruminant GIN, except for Cooperia punctata. Trichostrongylus colubriformis was most sensitive to CMLE (IC50 = 2.1 µg/mL) followed by Cooperia oncophora (IC50 = 27.6 µg/mL), Ostertagia ostertagi (IC50 = 48.5 µg/mL), Trichostrongylus axei (IC50 = 54.7 µg/mL), Haemonchus contortus (IC50 = 145.6 µg/mL), and Cooperia curticei (IC50 = 156.6 µg/mL). CONCLUSIONS: These results indicate that CMLE exhibits promising anthelmintic properties against infective larvae of a large variety of soil-transmitted nematodes.


Subject(s)
Anthelmintics , Combretum , Helminths , Nematoda , Proanthocyanidins , Trichostrongyloidea , Animals , Humans , Combretum/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Larva , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anthelmintics/pharmacology , Ruminants , Flavonoids/pharmacology , Phytochemicals/pharmacology
6.
Sci Rep ; 14(1): 4863, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418836

ABSTRACT

Plant-based melanin seems to be abundant, but it did not receive scientific attention despite its importance in plant biology and medicinal applications, e.g. photoprotection, radical scavenging, antimicrobial properties, etc. Date fruit melanin (DM) has complex, graphene-like, polymeric structure that needs characterization to understand its molecular properties and potential applications. This study provides the first investigation of the possible molecular composition of DM. High performance size-exclusion chromatography (HPSEC) suggested that DM contains oligomeric structures (569-3236 Da) and transmission electron microscopy (TEM) showed agglomeration of these structures in granules of low total porosity (10-1000 Å). Nuclear magnetic resonance (NMR) spectroscopy provided evidence for the presence of oligomeric proanthocyanidins and electron paramagnetic resonance (EPR) spectroscopy revealed a g-factor in the range 2.0034-2.005. Density functional theory (DFT) calculations suggested that the EPR signals can be associated with oligomeric proanthocyanidin structures having 4 and above molecular units of (-)-epicatechin. The discovery of edible melanin in date fruits and its characterization are expected to open a new area of research on its significance to nutritional and sensory characteristics of plant-based foods.


Subject(s)
Catechin , Phoeniceae , Proanthocyanidins , Proanthocyanidins/chemistry , Catechin/analysis , Melanins/analysis , Fruit/chemistry
7.
J Agric Food Chem ; 72(8): 4184-4194, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38350030

ABSTRACT

Cranberries contain proanthocyanidins with different interflavan bond types and degrees of polymerization. These chemical differences may impact the metabolism of proanthocyanidins by the intestinal microbiome. In our previous study, we found that healthy microbiomes produced higher concentrations of the phenolic acid metabolites 5-(3',4'-dihydroxyphenyl)-g-valerolactone and 3-hydroxyphenylacetic acid from the cranberry extract in comparison to ulcerative colitis (UC) microbiomes ex vivo. To understand this difference, LC-ESI-MS/MS was utilized to characterize the metabolism of the precursor proanthocyanidins. Healthy microbiomes metabolized procyanidin A2, procyanidin B2, and procyanidin dimeric intermediates but not A-type trimers, to a greater extent than UC microbiomes. The metabolism of procyanidin A2 and procyanidin B2 by fecal microorganisms was then compared to identify their derived phenolic acid metabolites. 5-(3',4'-Dihydroxyphenyl)-g-valerolactone and 3-hydroxyphenylacetic acid were identified as unique metabolites of procyanidin B2. Based on these results, the metabolism of procyanidin B2 contributed to the differential metabolism observed between healthy and UC microbiomes.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Hydroxybenzoates , Microbiota , Phenylacetates , Proanthocyanidins , Vaccinium macrocarpon , Proanthocyanidins/chemistry , Vaccinium macrocarpon/chemistry , Tandem Mass Spectrometry , Dysbiosis , Colitis, Ulcerative/drug therapy , Fruit/chemistry , Plant Extracts/chemistry
8.
J Agric Food Chem ; 72(8): 4023-4034, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38357881

ABSTRACT

In this study, an effective method for preparation of bioactive galloylated procyanidin B2-3'-O-gallate (B2-3'-G) was first developed by incomplete depolymerization of grape seed polymeric procyanidins (PPCs) using l-cysteine (Cys) in the presence of citric acid. The structure-activity relationship of B2-3'-G was further evaluated in vitro through establishing lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. The results suggested that the better protective effects of B2-3'-G against inflammation were attributed to its polymerization degree and the introduction of the galloyl group, compared to its four corresponding structural units. In vivo experiments demonstrated that the B2-3'-G prototype was distributed in plasma, small intestine, liver, lung, and brain. Remarkably, B2-3'-G was able to penetrate the blood-brain barrier and appeared to play an important role in improving brain health. Furthermore, a total of 18 metabolites were identified in tissues. Potential metabolic pathways, including reduction, methylation, hydration, desaturation, glucuronide conjugation, and sulfation, were suggested.


Subject(s)
Biflavonoids , Catechin , Proanthocyanidins , Humans , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Cysteine , Tissue Distribution , Biflavonoids/pharmacology , Biflavonoids/chemistry , Catechin/chemistry , Inflammation , Anti-Inflammatory Agents/pharmacology
9.
Anal Sci ; 40(3): 549-553, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072890

ABSTRACT

We demonstrated the electrochemical detection of procyanidins in peanut skin, which is often a waste product of the food industry, using a carbon nanotube electrode. Procyanidins, the main ingredients of peanut skin, are oligomers of catechin or epicatechin; therefore, they have various forms such as dimers, trimers, and a different number of linkages between monomers. Quantification using traditional high-performance liquid chromatography-mass spectroscopy (HPLC-MS) is tedious, because many peaks can be traced. The use of CNT electrodes for procyanidin sensing is promising, because CNT's properties, such as high conductivity, catalytic ability, and special geometry (high ratio of surface area to volume), enable common and specific profiles of the cyclic voltammograms (CVs) of procyanidins. Furthermore, the intensity of the anodic peaks (+ 0.32 V) due to the oxidation of catechol groups is proportional to the concentration of procyanidin (linear rang: 2.8-88 mg L-1, sensitivity: 1.4 mA mg-1 L cm-2), and does not depend on the type of procyanidin. The amount of procyanidins in the peanut skin estimated by CV was similar to that estimated by HPLC-MS. This study may contribute to accelerating the utilization of peanut skin for animal food, drugs, and supplementation.


Subject(s)
Biflavonoids , Catechin , Fabaceae , Nanotubes, Carbon , Proanthocyanidins , Animals , Catechin/chemistry , Proanthocyanidins/analysis , Proanthocyanidins/chemistry , Arachis/chemistry , Electrodes , Chromatography, High Pressure Liquid/methods
10.
Biosci Biotechnol Biochem ; 88(4): 345-351, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38059864

ABSTRACT

Procyanidins are one of the polyphenols consisting of multiple flavan-3-ols (eg epicatechin). They have a complex chemical structure, with the degree of polymerization and linked position of flavan-3-ols varying among various foods, such as apples and chocolate. Physiological functional studies of procyanidins have investigated their mechanisms in cells and animals based on their antioxidant effects. Recently, the intestinal environment, including the intestinal microflora, has played an important role in the energy metabolism and health status of the host. Regulation of the intestinal environment by dietary polyphenols is becoming a new concept in health functions, and we have begun to investigate the mechanism of apple procyanidins, focusing on the gut microbiota and metabolites in our functional research. In this minireview, we will discuss the effects of procyanidin ingestion on the gut microbiota and metabolites.


Subject(s)
Biflavonoids , Catechin , Malus , Proanthocyanidins , Animals , Proanthocyanidins/chemistry , Polyphenols , Malus/metabolism , Flavonoids/chemistry
11.
J Biomed Mater Res B Appl Biomater ; 112(1): e35333, 2024 01.
Article in English | MEDLINE | ID: mdl-37792302

ABSTRACT

Flavan-3-ol monomers are the building blocks of proanthocyanidins (PACs), natural compounds from plants shown to mediate specific biologic activities on dentin. While the stereochemistry of the terminal flavan-3-ols, catechin (C) versus epicatechin (EC), impacts the biomechanical properties of the dentin matrix treated with oligomeric PACs, structure-activity relationships driving this bioactivity remain elusive. To gain insights into the modulatory role of the terminal monomers, two highly congruent trimeric PACs from Pinus massoniana only differing in the stereochemistry of the terminal unit (Trimer-C vs. Trimer-EC) were prepared to evaluate their chemical characteristics as well as their effects on the viscoelasticity and biostability of biomodified dentin matrices via infrared spectroscopy and multi-scale dynamic mechanical analyses. The subtle alteration of C versus EC as terminal monomers lead to distinct immediate PAC-trimer biomodulation of the dentin matrix. Nano- and micro-dynamic mechanical analyses revealed that Trimer-EC increased the complex moduli (0.51 GPa) of dentin matrix more strongly than Trimer-C (0.26 GPa) at the nanoscale length (p < 0.001), whereas the reverse was found at the microscale length (p < .001). The damping capacity (tan δ) of dentin matrix decreased by 70% after PAC treatment at the nano-length scale, while increased values were found at the micro-length scale (~0.24) compared to the control (0.18 ; p < .001). An increase in amide band intensities and a decrease of complex moduli was observed after storage in simulated body fluid for both Trimer-C and Trimer-EC modified dentin. The stereochemical configuration of the terminal monomeric units, C and EC, did not impact the chemo-mechanical stability of dentin matrix.


Subject(s)
Catechin , Proanthocyanidins , Flavonoids/pharmacology , Flavonoids/analysis , Proanthocyanidins/pharmacology , Proanthocyanidins/analysis , Proanthocyanidins/chemistry , Catechin/pharmacology , Dentin/chemistry
12.
J Agric Food Chem ; 71(49): 19832-19844, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38048420

ABSTRACT

Ten dimeric procyanidin (PC) analogs were hemisynthesized from catechin or epicatechin and from five different aldehydes using the same mechanism that produces the important acetaldehyde-mediated adducts of proanthocyanidins (PAs) and anthocyanins in red wine. Protein precipitation capacity (PPC), octanol-water partition coefficient (log P) and stability of the PC analogs were determined. The emphasis was on the PPC because it has been shown to correlate with anthelmintic activity against gastrointestinal nematodes in ruminants and with other beneficial bioactivities in animals, as well. The PPC of PC analogs was greatly improved compared to natural PC dimers, but the capacity was not as great as that of a PC trimer or epigallocatechin gallate. The log P of PC analogs varied from hydrophobic to hydrophilic depending on the intramolecular linkage. Great variation was observed in stabilities of PC analogs in phosphate buffered saline, and the mixtures of degradation products were characterized using high-resolution mass spectrometry.


Subject(s)
Catechin , Proanthocyanidins , Wine , Animals , Proanthocyanidins/chemistry , Catechin/chemistry , Anthocyanins/analysis , Alcoholic Beverages/analysis , Wine/analysis , Phosphates/analysis
13.
J Org Chem ; 88(19): 13490-13503, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37748101

ABSTRACT

Proanthocyanidins (PACs) are complex flavan-3-ol polymers with stunning chemical complexity due to oxygenation patterns, oxidative phenolic ring linkages, and intricate stereochemistry of their heterocycles and inter-flavan linkages. Being promising candidates for dental restorative biomaterials, trace analysis of dentin bioactive cinnamon PACs now yielded novel trimeric (1 and 2) and tetrameric (3) PACs with unprecedented o- and p-benzoquinone motifs (benzoquinonoid PACs). Challenges in structural characterization, especially their absolute configuration, prompted the development of a new synthetic-analytical approach involving comprehensive spectroscopy, including NMR with quantum mechanics-driven 1H iterative functionalized spin analysis (HifSA) plus experimental and computational electronic circular dichroism (ECD). Vital stereochemical information was garnered from synthesizing 4-(2,5-benzoquinone)flavan-3-ols and a truncated analogue of trimer 2 as ECD models. Discovery of the first natural benzoquinonoid PACs provides new evidence to the experimentally elusive PAC biosynthesis as their formation requires two oxidative post-oligomerizational modifications (POMs) that are distinct and occur downstream from both quinone-methide-driven oligomerization and A-type linkage formation. While Nature is known to achieve structural diversity of many major compound classes by POMs, this is the first indication of PACs also following this common theme.


Subject(s)
Proanthocyanidins , Proanthocyanidins/chemistry , Phenols , Magnetic Resonance Spectroscopy , Circular Dichroism
14.
Mol Plant ; 16(11): 1773-1793, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37749887

ABSTRACT

The discovery of novel flavonoids and elucidation of their biosynthesis are fundamental to understanding their roles in plants and their benefits for human and animal health. Here, we report a new pathway for polymerization of a group of novel oligomeric flavonoids in plants. We engineered red cells for discovering genes of interest involved in the flavonoid pathway and identified a gene encoding a novel flavanol polymerase (FP) localized in the central vacuole. FP catalyzes the polymerization of flavanols, such as epicatechin and catechin, to produce yellowish dimers or oligomers. Structural elucidation shows that these compounds feature a novel oligomeric flaven-flavan (FF) skeleton linked by interflavan-flaven and interflaven bonds, distinguishing them from proanthocyanidins and dehydrodicatechins. Detailed chemical and physical characterizations further confirmed the novel FFs as flavonoids. Mechanistic investigations demonstrated that FP polymerizes flavan-3-ols and flav-2-en-3-ol carbocation, forming dimeric or oligomeric flaven-4→8-flavans, which we term "papanridins." Data from transgenic experiments, mutant analysis, metabolic profiling, and phylogenetic analyses show that the biosynthesis of papanridins is prevalent in cacao, grape, blueberry, corn, rice, Arabidopsis, and other species in the plant kingdom. In summary, our study discoveries a group of novel oligomeric flavonoids, namely papanridins, and reveals that a novel FP-mediated polymerization mechanism for the biosynthesis of papanridins in plants.


Subject(s)
Catechin , Proanthocyanidins , Animals , Humans , Flavonoids/metabolism , Phylogeny , Proanthocyanidins/analysis , Proanthocyanidins/chemistry , Catechin/analysis , Polyphenols
15.
Int J Biol Macromol ; 253(Pt 1): 126549, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37659485

ABSTRACT

In this study, the cholesterol (CH)-lowering behavioral mechanisms and drivers of condensed tannins (CTs) were revealed using a molecular aggregation theoretical model combined with in vitro experiments, as well as the CH-lowering effects of CTs validated based on animal experiments. Theoretical model results indicated that CTs can spontaneously aggregate to form supramolecular systems, can break CH micelles and form larger aggregates, a behavior driven by van der Waals forces and hydrogen bonds; DLS and TEM results confirmed that the presence of CH leads to a larger particle size of CTs and the formation of large aggregates; thermodynamic analysis and ITC revealed that the adsorption of CH by CTs is a spontaneous reaction driven by hydrogen bonds and hydrophobic forces; Animal experiments and fecal biochemical parameters further confirmed that the intake of CTs can reduce CH absorption and promotes CH excretion. Overall, this study reveals the CH-lowering behavioral mechanism of CTs from the perspective of molecular aggregation behavior.


Subject(s)
Micelles , Proanthocyanidins , Animals , Proanthocyanidins/chemistry , Cholesterol/chemistry , Thermodynamics
16.
J Agric Food Chem ; 71(32): 12311-12324, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37531597

ABSTRACT

Research on advanced glycation end product (AGEs) inhibition has generally focused on food processing, but many protein-AGEs will still be taken. Oligopeptide (OLP)-AGEs, as the main form after digestion, will damage human health once absorbed. Here, we investigated the ability of lotus seedpod oligomeric procyanidins (LSOPC) to inhibit the absorption of the OLP-AGEs and elucidated the underlying mechanism. Our results showed that the inhibition rate of LSOPC on the absorption of OLP-AGEs was about 50 ± 5.38%. 0.1, 0.2, and 0.3 mg/mL could upregulate the expression of ZO-1 and downregulate the expression of PepT1 and clathrin. Molecular docking showed that LSOPC could compete with the binding of OLP-AGEs to PepT1 and AP-2, thus inhibiting the absorption of OLP-AGEs. Furthermore, the interaction of LSOPC with the OLP-AGEs reduced the surface hydrophobicity of OLP-AGEs. It altered the secondary structure of the OLP-AGEs, thus weakening the affinity of the OLP-AGEs to the transporter protein to inhibit the absorption of OLP-AGEs. Together, our data revealed potential mechanisms by which LSOPC inhibit the absorption of OLP-AGEs and opened up new perspectives on the application of LSOPC in reducing the increasing health risks posed by OLP-AGEs.


Subject(s)
Lotus , Proanthocyanidins , Humans , Proanthocyanidins/chemistry , Lotus/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Glycation End Products, Advanced/chemistry , Seeds/chemistry
17.
Food Funct ; 14(17): 7992-8007, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37580964

ABSTRACT

Procyanidin-amino acid interactions during transmembrane transport cause changes in the structural and physical properties of peptides, which limits further absorption of oligopeptide-advanced glycation end products (AGEs). In this study, glycated casein hydrolysates (GCSHs) were employed to investigate the structure and interaction mechanism of GCSH with lotus seedpod oligomeric procyanidin (LSOPC) complexes in an intestinal environment. LSOPC can interact with GCSH under certain conditions to form hydrogen bonds and hydrophobic interactions to form GCSH-LSOPC complexes. Results showed that procyanidin further leads to the transformation of a GCSH secondary structure and the increase of surface hydrophobicity (H0). The strongest non-covalent interaction between GCSH and (-)-epigallocatechin gallate (EGCG) was due to the polyhydroxy structure of EGCG. Binding site analysis showed that EGCG binds to the internal cavity of P1 to maintain the relative stability of the binding conformation. The antioxidant capacity of GCSH was remarkably elevated by GCSH-LSOPC. This study will provide a new reference for the accurate control of oligopeptide-AGEs absorption by LSOPC in vivo.


Subject(s)
Catechin , Lotus , Proanthocyanidins , Caseins/analysis , Plant Extracts/chemistry , Proanthocyanidins/chemistry , Lotus/chemistry , Antioxidants/analysis , Catechin/chemistry , Glycation End Products, Advanced/metabolism , Seeds/chemistry , Digestion
18.
Biochem Pharmacol ; 214: 115682, 2023 08.
Article in English | MEDLINE | ID: mdl-37429424

ABSTRACT

Intervention trials confirmed that blood flow-mediated dilatation increases significantly after intake of astringent (-)-epicatechin (EC) oligomers (procyanidins)-rich foods, but the mechanism remains unclear. We have previously found that procyanidins can activate the sympathetic nervous and subsequently increase blood flow. Here, we examined whether procyanidin-derived reactive oxygen species (ROS) activate transient receptor potential (TRP) channels in gastrointestinal sensory nerves and consequently induce sympathoexcitation. We evaluated the redox properties of EC and its tetramer cinntamtannin A2 (A2) at pH 5 or 7, mimicking plant vacuole or oral cavity/small intestine using a luminescent probe. At pH 5, A2 or EC showed O2·- scavenging ability, but they promoted O2·- generation at pH 7. We observed blood flow in rat cremaster arterioles using laser Doppler, a single oral dose of 10 µg/kg A2 markedly increased blood flow, while EC showed little activity. This change with A2 was significantly dampened by co-administration of adrenaline blocker, ROS scavenger N-acetyl-L-cysteine (NAC), TRP vanilloid 1, or ankyrin 1 antagonist. We also performed a docking simulation of EC or A2 with the binding site of a typical ligand for each TRP channel and calculated the respective binding affinities. The binding energies were notably higher for A2 than typical ligands, suggesting that A2 is less likely to bind to these sites. ROS produced at neutral pH following the orally administered A2 to the gastrointestinal tract could activate TRP channels, triggering sympathetic hyperactivation and causing hemodynamic changes.


Subject(s)
Catechin , Proanthocyanidins , Transient Receptor Potential Channels , Rats , Animals , Transient Receptor Potential Channels/metabolism , Reactive Oxygen Species/metabolism , Proanthocyanidins/chemistry , Catechin/chemistry , Hemodynamics
19.
Int J Biol Macromol ; 248: 125935, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37482168

ABSTRACT

The effect of proanthocyanidins (PAs) from Chinese bayberry leaves (BLPs), grape seeds (GSPs), peanut skins (PSPs) and pine barks (PBPs) on physicochemical properties, structure and in-vitro digestibility of gelatinized maize starch was investigated. The results showed that all PAs remarkably retarded starch digestibility, meanwhile, BLPs highlighted superiority in increasing resistant starch content from 31.29 ± 1.12 % to 68.61 ± 1.15 %. The iodine-binding affinity analysis confirmed the interaction between PAs and starch, especially the stronger binding of BLPs to amylose, which was driven by non-covalent bonds supported by XRD and FT-IR analysis. Further, we found that PAs altered the rheological properties, thermal properties and morphology structure of starch. In brief, PAs induced larger consistency, poorer flow ability, lower gelatinization temperatures and melting enthalpy change (ΔH) of starch paste. SEM and CLSM observation demonstrated that PAs facilitated starch aggregation. Our results indicated that PAs especially BLPs could be considered as potential additives to modify starch in food industry.


Subject(s)
Proanthocyanidins , Proanthocyanidins/chemistry , Zea mays/chemistry , Spectroscopy, Fourier Transform Infrared , Starch/chemistry , Amylose/chemistry
20.
Int J Biol Macromol ; 242(Pt 3): 125120, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37263329

ABSTRACT

One distinguishing feature of the persimmon, that differentiates it from other fruits, is its high proanthocyanidins content, known as persimmon tannin (PT). Despite the poor absorption of PT in the small intestine, results from animal studies demonstrate that PT has many health benefits. Our goal in this review is to summarize the literature that elucidates the relationship between PT structure and activity. In addition, we also summarize the potential mechanisms underlying the health benefits that result from PT consumption; this includes the hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, antiradiation, antibacterial and antiviral, detoxification effects on snake venom, and the absorption of heavy metals and dyes. Studies show that PT is a structurally distinct proanthocyanidins that exhibits a high degree of polymerization. It is galloylation-rich and possesses unique A-type interflavan linkages in addition to the more common B-type interflavan bonds. Thus, PT is converted into oligomeric proanthocyanidins by depolymerization strategies, including the nucleophilic substitution reaction, acid hydrolysis, and hydrogenolysis. In addition, multiple health benefits exerted by PT mainly involve the inactivation of lipogenic and intracellular inflammatory signaling pathways, activation of the fatty acid oxidation signaling pathway, regulation of gut microbiota, and highly absorptive properties.


Subject(s)
Diospyros , Proanthocyanidins , Animals , Tannins/chemistry , Plant Extracts/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/chemistry , Diospyros/chemistry , Fruit/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...